Course: Process Engineering III

« Back
Course title Process Engineering III
Course code TUVI/TP7PI
Organizational form of instruction Lecture + Lesson
Level of course Master
Year of study not specified
Semester Winter
Number of ECTS credits 4
Language of instruction Czech
Status of course Compulsory
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Janáčová Dagmar, prof. Ing. CSc.
Course content
1. Introduction, non-stationary mass and heat balances - determine of differential equations for problems, their solutions Laplace transform, solved using Maple or Mathematica software 2. Mathematical model of a liquid reservoir not isolated from the surroundings 3. Mathematical description of the thermal heater (mixer) of liquids, 4. Mathematical model of a non-flowing stirred polymerization reactor 5. Unsteady conduction heat sharing in solids - derivation of the temperature field for a cylinder, Examples from modeling of discussed tasks in the programming environment Maple, Mathematica... 6. Heat and mass sharing - drying, MM, material and energy balance of drying processes. 7. Energy balances during polymer processing. 8. Heat in production processes. 9. Direct and indirect electric resistance heat 10. Arc heat 11. Electric induction heat 12. Other heating: dielectric heat, infrared 13. Other heating: laser, plasma and electron heat 14. Calculation of technology heat and heat balance in process engineering.

Learning activities and teaching methods
Lecturing, Simple experiments
  • Home preparation for classes - 14 hours per semester
  • Participation in classes - 56 hours per semester
  • Term paper - 10 hours per semester
  • Preparation for examination - 28 hours per semester
prerequisite
Knowledge
Knowledge of process engineering at the level of bachelor study programme.
Knowledge of process engineering at the level of bachelor study programme.
learning outcomes
The student has knowledge about the sharing of heat, mass and energy.
The student has knowledge about the sharing of heat, mass and energy.
He/she orients himself/herself in the literature sources and is able to find the necessary thermodynamic data.
He/she orients himself/herself in the literature sources and is able to find the necessary thermodynamic data.
Skills
The student is able to perform more demanding balance calculations related to the dynamic behavior of systems.
The student is able to perform more demanding balance calculations related to the dynamic behavior of systems.
The student successfully implements the necessary required calculations to minimize energy consumption in production technologies while maintaining the required properties of the product.
The student successfully implements the necessary required calculations to minimize energy consumption in production technologies while maintaining the required properties of the product.
teaching methods
Knowledge
Lecturing
Lecturing
Dialogic (Discussion, conversation, brainstorming)
Dialogic (Discussion, conversation, brainstorming)
Skills
Simple experiments
Simple experiments
Practice exercises
Practice exercises
assessment methods
Knowledge
Analysis of seminar paper
Analysis of seminar paper
Oral examination
Oral examination
Didactic test
Didactic test
Grade (Using a grade system)
Grade (Using a grade system)
Recommended literature
  • Kurz Procesní inženýrství III. Moodle, dostupné na http://vyuka.fai.utb.cz/course/view.php?id=126, vstupní heslo: ping3.
  • Bejan, A., Kraus, A.D. Heat Transfer Handbook. John Wiley & Sons, 2003. ISBN 978-0-471-39015-2.
  • DRÁBEK, D., KLEPÁČ, J. Procesné strojníctvo II, STU Bratislava, 2000. ISBN 80-227-1340-6.
  • Dvořák, Z. Cvičení elektrické teplo. Podpory UVI.
  • DVOŘÁK, Z. Elektrické teplo. Podpory UVI.
  • Janáčová, D., Charvátová,H., Kolomazník, K., Blaha, A. Procesní inženýrství : transportní, fyzikální a termodynamická data. Univerzita Tomáše Bati ve Zlíně, 2011. ISBN 978-80-7318-997-6.
  • JANOTKOVÁ, E., PAVELEK, M. Termomechanika, FSI VUT Brno, 2003.
  • Jícha, M. Přenos tepla a látky. CERM, 2001. ISBN 8021420294.
  • KOLAT, P. Přenos tepla a hmoty, FS, VŠB-TU Ostrava, 2001.
  • Kolomazník, K. Teorie technologických procesů III. Brno : VUT, 1978.
  • Míka, V. a kol. Chemickoinženýrské výpočty. Praha : VŠCHT, 1996.
  • Míka, Vladimír. Chemickoinženýrské výpoety I. Vyd. 3. Praha : VŠCHT, 1996. ISBN 80-7080-255-3.
  • Ozisik, N. Heat Transfer. McGraw-Hill Book Company, 1985.
  • Šesták, Jiří. Přenos hybnosti, tepla a hmoty. 2. vyd. Praha : ČVUT, 1998. ISBN 800101715X.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester