Course: Process Engineering II

« Back
Course title Process Engineering II
Course code TUIP/T5PR
Organizational form of instruction Lecture + Tutorial + Seminary
Level of course Bachelor
Year of study not specified
Semester Winter
Number of ECTS credits 5
Language of instruction Czech
Status of course Compulsory
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Bařinová Michaela, Mgr. Ph.D.
  • Husár Jakub, Ing. Ph.D.
  • Janáčová Dagmar, prof. Ing. CSc.
  • Pecha Jiří, doc. Ing. Ph.D.
  • Svoboda Petr, prof. Ing. Ph.D.
  • Kolomazník Karel, prof. Ing. DrSc.
  • Beltrán Prieto Juan Carlos, Ing. Ph.D.
  • Kalendová Alena, doc. Ing. Ph.D.
Course content
1. Fundamental terms of process engineering. Similarity of systems and actions. Conduction, convection, coefficient of conduction, non-dimensional criteria. 2. Heat passage. Heat passage coefficient, heat passage over compound board, compound cylindrical and ball side, thermal resistance, heat isolation. 3. Exchangers. Classification of exchangers, heat passage coefficient exchanger, enthalpy balance - sheet exchanger, achievement exchanger, middle logarithmic temperature difference, uniflow and backset exchanger. 4. Heat interchange radiation. Emissivity, reflectance, absorption capacity, permeability, relation between absorption capacity and emissivities, absolute bull's - eye, absolute whites, grey body, aggregate emissivity, Stefan-Boltzmann´s law, Boltzmann´s constant. Solutions of non-stationary heat interchange conduction in stiff materials. Fourier Kirchhoff´s equation of conduction. Non-stationary field of temperature for "infinite board" - Fourier's separation of variables for the third condition. 5. Peropheral conditions for Fourier-Kirchhoff´s equation. Temperature conductivity. Records of the particular conditions. 6. Heating and cooling of chambers by heat passage from running liquids outside the chamber. Calculations of the temperature in the chamber depending on time using the heat balance. 7. Diffusion, Fick´s first law. Definition of concentrations, speeds and densities of flow masses. Average local rate depending on the quantity, rate of the components related to immobile coordinates and to the local rate. 8. Fick´s second law, diffusion equation. Diffusivity. Convection diffusion - analogy to the heat passage. 9. Diffusion in metals. Mechanisms of diffusion in crystalline materials. Diffusion conditions in metals. 10. Thermodynamics of real gases, equation of state of a real gas, wet, saturated, superheated water vapor, 11. Properties of air, enthalpy diagram of moist air, relative air humidity, relative mass fraction of humidity and other quantities determining the state of the air. 13. Drying. Bond of humidity in substances. Balance, sorption and desorption curve. Drying curve and its rate. Region of a constant desiccation speed, region of a decreasing desiccation speed. Critical point. 14. Material and energy flow and energy in desiccation cabinets.

Learning activities and teaching methods
Monologic (Exposition, lecture, briefing), Dialogic (Discussion, conversation, brainstorming), Practice exercises, Individual work of students
  • Preparation for examination - 210 hours per semester
prerequisite
Knowledge
Knowledge of mathematics, physics and chemistry.
Knowledge of mathematics, physics and chemistry.
learning outcomes
The student understands transfer of heat, mass and energy.
The student understands transfer of heat, mass and energy.
He/she is well oriented in required literature and can use requested thermodynamic data.
He/she is well oriented in required literature and can use requested thermodynamic data.
Skills
The student is able to perform simple balance calculations and calculations concerning flow of the fluid in pipes.
The student is able to perform simple balance calculations and calculations concerning flow of the fluid in pipes.
He/she performs calculations to propose technological equipments including their dimensions and to optimize technological processes while maintaing the lowest possible cost.
He/she performs calculations to propose technological equipments including their dimensions and to optimize technological processes while maintaing the lowest possible cost.
teaching methods
Knowledge
Lecturing
Lecturing
Dialogic (Discussion, conversation, brainstorming)
Dialogic (Discussion, conversation, brainstorming)
Skills
Simple experiments
Simple experiments
Practice exercises
Practice exercises
assessment methods
Knowledge
Composite examination (Written part + oral part)
Composite examination (Written part + oral part)
Grade (Using a grade system)
Grade (Using a grade system)
Recommended literature
  • DRÁBEK, D., KLEPÁČ, J. Procesné strojníctvo II, STU Bratislava, 2000. ISBN 80-227-1340-6.
  • DVOŘÁK, Z. Sdílení tepla a výměníky, ČVUT Praha, FS, 1992.
  • Janáčová, D., Charvátová,H., Kolomazník, K., Blaha, A. Procesní inženýrství : transportní, fyzikální a termodynamická data. Univerzita Tomáše Bati ve Zlíně, 2011. ISBN 978-80-7318-997-6.
  • JANOTKOVÁ, E., PAVELEK, M. Termomechanika, FSI VUT Brno, 2003.
  • KOLAT, P. Přenos tepla a hmoty, FS, VŠB-TU Ostrava, 2001.
  • KOLOMAZNÍK, K. Teorie technologických procesů I, VUT Brno, FT Zlín, 1975.
  • KOLOMAZNÍK, K. Teorie technologických procesů III, VUT Brno, FT Zlín, 1978.
  • MÍKA, V. a kol. Chemické inženýrství 2. Praha : VŠCHT, 1999. ISBN 80-7080-359-2.
  • Míka, Vladimír. Chemickoinženýrské výpoety I. Vyd. 3. Praha : VŠCHT, 1996. ISBN 80-7080-255-3.
  • NEUŽIL, L., MÍKA, V. Chemické inženýrství 2. Praha : VŠCHT, 1999. ISBN 80-7080-359-2.
  • Neužil, Lubomír. Chemické inženýrství. 1. vyd. Dotisk. Praha : VŠCHT, 1992. ISBN 8070801646.
  • SEDLÁŘ, J., KOLOMAZNÍK, K. Teoretické základy energetických zařízení, VUT Brno, FT Zlín, 1982.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester
Faculty: Faculty of Technology Study plan (Version): Technological Equipment (2016) Category: Leather and shoe manufacture and working with plastics 3 Recommended year of study:3, Recommended semester: Winter