Lecturer(s)
|
-
Vilčáková Jarmila, prof. Ing. Ph.D.
-
Moučka Robert, Ing. Ph.D.
|
Course content
|
- Electromagnetic radiation (spectrum, black body radiation). - Physics of the microworld (corpuscular wave dualism, quantum theory). - Mathematics of vector fields I (field, scalar product, vector product, gradient). - Mathematics of vector fields II (flow and divergence of a vector field, circulation and rotation of a vector field). - Maxwell's equations (application of the mathematical apparatus to the static and dynamic case). - Dielectrics (complex permittivity, electric polarization vector). - Internal construction of dielectrics (molecular dipoles, electron polarization, polar molecules, permittivity of liquids). - Dielectric spectroscopy (relaxation, principle, approximation - models (Debye, Cole-Cole, Cole-Davidson, Havriliak-Negami)). - Magnetism (magnetic field, diamagnetism, paramagnetism). - Static and dynamic magnetic properties of materials (magnetization curve, magnetic anisotropy (crystalline, elastic, shape)), magnetic materials (soft, hard, powder, ferrites). - Ferromagnetism (formation criteria, domain structure, spontaneous magnetization). - Composite electric/magnetic materials (percolation theory, critical filling, local fields, effective values, electrorheological and magnetorheological systems). - Conductive polymers (electrical conductivity, band theory of conductivity, PANI). - Electromagnetic compatibility (shielding, absorption of electromagnetic radiation).
|
Learning activities and teaching methods
|
Monologic (Exposition, lecture, briefing), Dialogic (Discussion, conversation, brainstorming), Practice exercises
- Preparation for examination
- 90 hours per semester
|
learning outcomes |
---|
Knowledge |
---|
describe the types and properties of electromagnetic radiation |
describe the types and properties of electromagnetic radiation |
explain the properties of vector arrays |
explain the properties of vector arrays |
explain Maxwell's equations |
explain Maxwell's equations |
characterise the parameters describing dielectrics |
characterise the parameters describing dielectrics |
characterise the parameters describing magnetic materials |
characterise the parameters describing magnetic materials |
Skills |
---|
calculate with vector fields |
calculate with vector fields |
apply Maxwell's equations |
apply Maxwell's equations |
calculate the parameters describing the dielectric |
calculate the parameters describing the dielectric |
account for parameters describing magnetic materials |
account for parameters describing magnetic materials |
teaching methods |
---|
Knowledge |
---|
Monologic (Exposition, lecture, briefing) |
Dialogic (Discussion, conversation, brainstorming) |
Dialogic (Discussion, conversation, brainstorming) |
Monologic (Exposition, lecture, briefing) |
Skills |
---|
Practice exercises |
Practice exercises |
Individual work of students |
Individual work of students |
assessment methods |
---|
Knowledge |
---|
Analysis of seminar paper |
Grade (Using a grade system) |
Grade (Using a grade system) |
Analysis of seminar paper |
Recommended literature
|
-
Ajayan, Pulickel M. Nanocomposite science and technology. Weinheim : Wiley-VCH, 2003. ISBN 3527303596.
-
Aneli, J.N. Structuring and conductivity of polymer composites. New York : Nova Science Publishers, 1998. ISBN 1560725389.
-
DEKKER, A.J. Fyzika pevných látek. Praha: Academia, 1966.
-
FEYNMAN, R.P., LEIGHTON, R.B., SANDS, M. Feynmanovy přednášky z fyziky: revidované vydání s řešenými příklady. 2. vyd.. Praha: Fragment. 3 sv.: 732, 806, 435 s., 2013. ISBN 978-80-253-1642-9.
-
KITTEL, C. Úvod do fyziky pevných látek. Praha: Academia, 1985.
-
KRAUS, I. Elementární fyzika pevných látek. Praha: FEL ČVUT, 2011. ISBN 978-80-01-04931-0.
-
PIERRET, R.F. Advanced Semiconductor Fundamentals. 2nd Ed.. Pearson Prentice Hall Publisher, 2002. ISBN 013061792X.
|