|
Lecturer(s)
|
-
Vilčáková Jarmila, prof. Ing. Ph.D.
-
Moučka Robert, Ing. Ph.D.
|
|
Course content
|
- Electromagnetic radiation (spectrum, black body radiation). - Physics of the microworld (corpuscular wave dualism, quantum theory). - Mathematics of vector fields I (field, scalar product, vector product, gradient). - Mathematics of vector fields II (flow and divergence of a vector field, circulation and rotation of a vector field). - Maxwell's equations (application of the mathematical apparatus to the static and dynamic case). - Dielectrics (complex permittivity, electric polarization vector). - Internal construction of dielectrics (molecular dipoles, electron polarization, polar molecules, permittivity of liquids). - Dielectric spectroscopy (relaxation, principle, approximation - models (Debye, Cole-Cole, Cole-Davidson, Havriliak-Negami)). - Magnetism (magnetic field, diamagnetism, paramagnetism). - Static and dynamic magnetic properties of materials (magnetization curve, magnetic anisotropy (crystalline, elastic, shape)), magnetic materials (soft, hard, powder, ferrites). - Ferromagnetism (formation criteria, domain structure, spontaneous magnetization). - Composite electric/magnetic materials (percolation theory, critical filling, local fields, effective values, electrorheological and magnetorheological systems). - Conductive polymers (electrical conductivity, band theory of conductivity, PANI). - Electromagnetic compatibility (shielding, absorption of electromagnetic radiation).
|
|
Learning activities and teaching methods
|
Monologic (Exposition, lecture, briefing), Dialogic (Discussion, conversation, brainstorming), Practice exercises
- Preparation for examination
- 60 hours per semester
- Participation in classes
- 42 hours per semester
- Preparation for course credit
- 10 hours per semester
- Home preparation for classes
- 8 hours per semester
|
| learning outcomes |
|---|
| Knowledge |
|---|
| describe the types and properties of electromagnetic radiation |
| describe the types and properties of electromagnetic radiation |
| explain the properties of vector arrays |
| explain the properties of vector arrays |
| explain Maxwell's equations |
| explain Maxwell's equations |
| characterise the parameters describing dielectrics |
| characterise the parameters describing dielectrics |
| characterise the parameters describing magnetic materials |
| characterise the parameters describing magnetic materials |
| Skills |
|---|
| calculate with vector fields |
| calculate with vector fields |
| apply Maxwell's equations |
| apply Maxwell's equations |
| calculate the parameters describing the dielectric |
| calculate the parameters describing the dielectric |
| account for parameters describing magnetic materials |
| account for parameters describing magnetic materials |
| teaching methods |
|---|
| Knowledge |
|---|
| Dialogic (Discussion, conversation, brainstorming) |
| Educational trip |
| Monologic (Exposition, lecture, briefing) |
| Monologic (Exposition, lecture, briefing) |
| Dialogic (Discussion, conversation, brainstorming) |
| Educational trip |
| Skills |
|---|
| Educational trip |
| Educational trip |
| Practice exercises |
| Practice exercises |
| Individual work of students |
| Individual work of students |
| assessment methods |
|---|
| Knowledge |
|---|
| Analysis of seminar paper |
| Analysis of seminar paper |
| Grade (Using a grade system) |
| Grade (Using a grade system) |
|
Recommended literature
|
-
Ajayan, Pulickel M. Nanocomposite science and technology. Weinheim : Wiley-VCH, 2003. ISBN 3527303596.
-
Aneli, J.N. Structuring and conductivity of polymer composites. New York : Nova Science Publishers, 1998. ISBN 1560725389.
-
DEKKER, A.J. Fyzika pevných látek. Praha: Academia, 1966.
-
FEYNMAN, R.P., LEIGHTON, R.B., SANDS, M. Feynmanovy přednášky z fyziky: revidované vydání s řešenými příklady. 2. vyd.. Praha: Fragment. 3 sv.: 732, 806, 435 s., 2013. ISBN 978-80-253-1642-9.
-
KITTEL, C. Úvod do fyziky pevných látek. Praha: Academia, 1985.
-
KRAUS, I. Elementární fyzika pevných látek. Praha: FEL ČVUT, 2011. ISBN 978-80-01-04931-0.
-
PIERRET, R.F. Advanced Semiconductor Fundamentals. 2nd Ed.. Pearson Prentice Hall Publisher, 2002. ISBN 013061792X.
|