Course: Electromagnetic Properties of Materials

« Back
Course title Electromagnetic Properties of Materials
Course code TUFMI/TP8EV
Organizational form of instruction Lecture + Seminary
Level of course Master
Year of study not specified
Semester Summer
Number of ECTS credits 4
Language of instruction Czech
Status of course Compulsory
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Vilčáková Jarmila, prof. Ing. Ph.D.
  • Moučka Robert, Ing. Ph.D.
Course content
- Electromagnetic radiation (spectrum, black body radiation). - Physics of the microworld (corpuscular wave dualism, quantum theory). - Mathematics of vector fields I (field, scalar product, vector product, gradient). - Mathematics of vector fields II (flow and divergence of a vector field, circulation and rotation of a vector field). - Maxwell's equations (application of the mathematical apparatus to the static and dynamic case). - Dielectrics (complex permittivity, electric polarization vector). - Internal construction of dielectrics (molecular dipoles, electron polarization, polar molecules, permittivity of liquids). - Dielectric spectroscopy (relaxation, principle, approximation - models (Debye, Cole-Cole, Cole-Davidson, Havriliak-Negami)). - Magnetism (magnetic field, diamagnetism, paramagnetism). - Static and dynamic magnetic properties of materials (magnetization curve, magnetic anisotropy (crystalline, elastic, shape)), magnetic materials (soft, hard, powder, ferrites). - Ferromagnetism (formation criteria, domain structure, spontaneous magnetization). - Composite electric/magnetic materials (percolation theory, critical filling, local fields, effective values, electrorheological and magnetorheological systems). - Conductive polymers (electrical conductivity, band theory of conductivity, PANI). - Electromagnetic compatibility (shielding, absorption of electromagnetic radiation).

Learning activities and teaching methods
Monologic (Exposition, lecture, briefing), Dialogic (Discussion, conversation, brainstorming), Practice exercises
  • Preparation for examination - 90 hours per semester
learning outcomes
Knowledge
describe the types and properties of electromagnetic radiation
describe the types and properties of electromagnetic radiation
explain the properties of vector arrays
explain the properties of vector arrays
explain Maxwell's equations
explain Maxwell's equations
characterise the parameters describing dielectrics
characterise the parameters describing dielectrics
characterise the parameters describing magnetic materials
characterise the parameters describing magnetic materials
Skills
calculate with vector fields
calculate with vector fields
apply Maxwell's equations
apply Maxwell's equations
calculate the parameters describing the dielectric
calculate the parameters describing the dielectric
account for parameters describing magnetic materials
account for parameters describing magnetic materials
teaching methods
Knowledge
Monologic (Exposition, lecture, briefing)
Dialogic (Discussion, conversation, brainstorming)
Dialogic (Discussion, conversation, brainstorming)
Monologic (Exposition, lecture, briefing)
Skills
Practice exercises
Practice exercises
Individual work of students
Individual work of students
assessment methods
Knowledge
Analysis of seminar paper
Grade (Using a grade system)
Grade (Using a grade system)
Analysis of seminar paper
Recommended literature
  • Ajayan, Pulickel M. Nanocomposite science and technology. Weinheim : Wiley-VCH, 2003. ISBN 3527303596.
  • Aneli, J.N. Structuring and conductivity of polymer composites. New York : Nova Science Publishers, 1998. ISBN 1560725389.
  • DEKKER, A.J. Fyzika pevných látek. Praha: Academia, 1966.
  • FEYNMAN, R.P., LEIGHTON, R.B., SANDS, M. Feynmanovy přednášky z fyziky: revidované vydání s řešenými příklady. 2. vyd.. Praha: Fragment. 3 sv.: 732, 806, 435 s., 2013. ISBN 978-80-253-1642-9.
  • KITTEL, C. Úvod do fyziky pevných látek. Praha: Academia, 1985.
  • KRAUS, I. Elementární fyzika pevných látek. Praha: FEL ČVUT, 2011. ISBN 978-80-01-04931-0.
  • PIERRET, R.F. Advanced Semiconductor Fundamentals. 2nd Ed.. Pearson Prentice Hall Publisher, 2002. ISBN 013061792X.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester