Course: Physics of polymer solutions

« Back
Course title Physics of polymer solutions
Course code TUFMI/TP6FP
Organizational form of instruction Lecture + Lesson
Level of course Bachelor
Year of study not specified
Semester Summer
Number of ECTS credits 5
Language of instruction Czech
Status of course Compulsory-optional
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Sližová Marta, RNDr. CSc.
Course content
1. Composition and architecture of polymer chains. 2. Intermolecular forces. 3. Distribution of polymers according to the degree of cohesion. 4. Geometry of polymer chains. 5. Polymer coil. 6. Theta-solutions and polymer melts - Boyle temperature. 7. Polymers in solution. 8. Scaling concept - De Gennes. 9. Equilibrium states in the liquid phase - Osmotic pressure. 10. Polymer chain dynamics. 11. Molar mass of polymers, distriburion functions, averages. 12. Methods for molar mass measuring. 13. Glass transition - free volume theory, energy theory, Vogel's equation, WLF theory. 14. Crystallization of polymers.

Learning activities and teaching methods
Dialogic (Discussion, conversation, brainstorming)
  • Preparation for course credit - 150 hours per semester
prerequisite
Knowledge
Knowledge of macromolecular chemistry and technology of macromolecular substances.
Knowledge of macromolecular chemistry and technology of macromolecular substances.
learning outcomes
explain the composition of polymer chains
explain the composition of polymer chains
describe the geometry of polymer chains
describe the geometry of polymer chains
discuss polymers in solution
discuss polymers in solution
explain the process of polymer crystallisation
explain the process of polymer crystallisation
discuss the glass transition
discuss the glass transition
Skills
calculate the distance between the ends of the polymer chain
calculate the distance between the ends of the polymer chain
classify polymers according to the degree of cohesion
classify polymers according to the degree of cohesion
prepare polymer solution
prepare polymer solution
determine the optical character of spherulites of semicrystalline polymers
determine the optical character of spherulites of semicrystalline polymers
measure the glass transition temperature
measure the glass transition temperature
teaching methods
Knowledge
Lecturing
Lecturing
Dialogic (Discussion, conversation, brainstorming)
Dialogic (Discussion, conversation, brainstorming)
Skills
Simple experiments
Simple experiments
Practice exercises
Practice exercises
assessment methods
Knowledge
Analysis of the student's performance
Analysis of the student's performance
Oral examination
Oral examination
Recommended literature
  • Bueche, F. Physical Properties of Polymers. New York : John Wiley, 1962. ISBN 0470116641.
  • Carreau P.J., De Kee D.C.R., Chhabra R.P. Rheology of Polymeric Systems;Hanser Publishers, Munchen;. Hanser Publishers, Munchen, 1997.
  • Doi, M. Introduction to Polymer Physics. Oxford : Clarendon Press, 1996. ISBN 0-19-851772-6.
  • Ellis B. Polymers A. Property Database (CD ROM). London : CRC Press, 2000. ISBN 0-849-31055-5.
  • Furukawa, Junji. Physical chemistry of polymer rheology. Tokyo : Kodansha, 2003. ISBN 3-540-00053-4.
  • Kausch H. Radiation Effects on Polymers for Biological Use. Serie of Advances in Polymer Science. Springer, 2003. ISBN 3-540-44020-2.
  • Macháček, L. Struktura a vlastnosti materiálů. Brno : VUT, 1987.
  • Meissner, B., Zilvar, V. Fyzika polymerů. Struktura a vlastnosti polymerních materiálů. Praha : SNTL, 1987.
  • Strobl, G. The Physics of Polymers. Concept for Understanding Their Structures and Behavior. Berlin : Springer, 1996. ISBN 3540607684.
  • Wein, O. Úvod do reologie. Brno : Malé Centrum, 1996. ISBN 80-238-0928-8.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester