Course: Physics III

« Back
Course title Physics III
Course code TUFMI/TP4F3
Organizational form of instruction Lecture + Seminary
Level of course Bachelor
Year of study not specified
Semester Summer
Number of ECTS credits 3
Language of instruction Czech
Status of course Compulsory
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Kutálková Eva, RNDr. Ph.D.
Course content
1. Atomic structure: discovery of the radioactivity, discovery of the electron, discovery of the atomic nucleus. 2. Old quantum theory: planetary model of the atom, Bohr's model of the hydrogen atom, Mendeleev periodic system. 3. Atomic spectra: emission and absorption optical spectra of the atom, emission and absorption X-ray atomic spectra, spectral analysis. 4. Fundamentals of nuclear physics: radioactive decay, nuclear reactions, nuclear fission and fusion. 5. The wave-particle dualism: the de Broglie's hypothesis, Young's double slit experiment with classical particles, waves and microobjects. 6. The postulates and the mathematical apparatuss of quantum mechanics: wave function, priciple of superposition, expansion in eigenfunctions,Hermite operators representing physical quantities, measurements in microworld. 7. The Schrödinger equation: the time development of the state of a microobject, general Schrödinger equation, the stationary Schrödinger equation. 8. Simple (square) potential models: energy quantization, tunel effect, resonance capture. 9. Applications: autoemission, thermoemission, contact potential, radioactivity 10. Approximation methods: discontinuous potentials, perturbation and variation methods. 11. The hydrogen atom: energy spectrum, geometrical visualisation of the charge density. 12. Spin: spin hypothesis, spin effects in the hydrogen atom. 13. Quantum mechanics of multiparticle systems : indistinguishability principle, the exchange interaction, boson and fermion systems, the Pauli exclusion principle. 14. Atoms with more electrons: the Mendeleev periodic system. Chemical bond.

Learning activities and teaching methods
Lecturing, Practice exercises
  • Home preparation for classes - 15 hours per semester
  • Participation in classes - 42 hours per semester
  • Preparation for course credit - 13 hours per semester
  • Preparation for examination - 20 hours per semester
prerequisite
Knowledge
Basic knowledge of vector calculus, differential and integral calculus is assumed as well as basics knowledge of the physics.
Basic knowledge of vector calculus, differential and integral calculus is assumed as well as basics knowledge of the physics.
learning outcomes
explain the structure of the atom and the formation of spectra
explain the structure of the atom and the formation of spectra
describe the basic concepts of nuclear physics
describe the basic concepts of nuclear physics
explain the Schrödinger equation
explain the Schrödinger equation
explain the tunnel phenomenon
explain the tunnel phenomenon
describe atoms with multiple electrons: Mendeleev's periodic table
describe atoms with multiple electrons: Mendeleev's periodic table
Skills
calculate the emission spectrum of a hydrogen atom
calculate the emission spectrum of a hydrogen atom
calculate the age of the sample based on radioactive decay
calculate the age of the sample based on radioactive decay
solve the Schrödinger equation for simple jump potentials
solve the Schrödinger equation for simple jump potentials
analyse Mendeleev's periodic table
analyse Mendeleev's periodic table
graphically represent the charge density of an atom
graphically represent the charge density of an atom
teaching methods
Knowledge
Lecturing
Lecturing
Demonstration
Demonstration
Skills
Practice exercises
Practice exercises
Dialogic (Discussion, conversation, brainstorming)
Dialogic (Discussion, conversation, brainstorming)
assessment methods
Knowledge
Oral examination
Oral examination
Grade (Using a grade system)
Grade (Using a grade system)
Recommended literature
  • FEYNMAN, R.P. Feynmanovy přednášky z fyziky - revidované vydání - 1. díl. Praha: Fragment, 2024. ISBN 978-80-253-7063-6.
  • FEYNMAN, R.P. Feynmanovy přednášky z fyziky - revidované vydání - 3. díl. Praha: Fragment, 2024. ISBN 978-80-253-7065-0.
  • FORMÁNEK, J. Úvod do kvantové teorie. Část I. 2. upr. a rozš. vyd.. Praha: Academia, 2004. ISBN 80-200-1176-5.
  • FORMÁNEK, J. Úvod do kvantové teorie. Část II.. Praha: Academia, 2004. ISBN 80-200-1176-5.
  • HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentals of Physics Extended. Wiley, 2010. ISBN 978-0470469088.
  • HALLIDAY, D., RESNICK, R., WALKER, J. Fyzika 1, 2. Překlad 8. vyd. Dotisk.. Brno: VUTIUM, 2021. ISBN 978-80-214-4123-1.
  • PIŠÚT, J., GOMOLČÁK, L., ČERNÝ, V. Úvod do kvantovej mechaniky. Bratislava: FMFI UK, 2008. ISBN 978-80-89186-33-4.
  • SKÁLA, L. Úvod do kvantové mechaniky. 2. vyd.. Praha: Academia, 2011. ISBN 978-80-2462-022-0.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester