Lecturer(s)
|
|
Course content
|
- Basic characterization and classification of inorganic materials. Properties of materials depending on the type of bond and material structure. Fundamentals of crystallography. Basic principles of selected analytical methods for studying the properties of glass and ceramics. - Glass structure and polymorphic transformations of SiO2. Glass state. Kinetic theory of glass formation and its use for the preparation of glass and crystalline materials. - Glass technology. Summary of physicochemical processes occurring during melting and processing of glass and an overview of technologies used for the production of basic glass products and semi-finished products. - Glass refinement and cooling. Formation and nature of stress in glass and its control by controlling the cooling rate. Chemical hardening of glass. Chemical resistance of glass. - Glass ceramics, technology and properties. Basic processes occurring during the formation and growth of crystals and their use for the preparation of glass ceramics. - Ceramics - definition and classification of ceramic materials. Principle of ceramic formation. Structure, phase composition and basic properties of ceramic materials. Comparison of basic and advanced technologies for the preparation of ceramic materials. - Overview of the properties of industrial inorganic glasses. Quartz and silica glasses, borosilicate glasses and their application in the production of microporous glasses. Optical properties of glass and an overview of optical glasses for the visible and infrared regions. - Basic types of traditional and advanced ceramic materials, their properties. Advanced ceramics for electrical engineering and electronics, magnetic materials and refractory materials. - Sol-gel method, glass and ceramic coatings. Thin film technology (anodizing, enameling, sputtering, PLD, sol-gel) and their use for improving the properties of materials. - Inorganic binders. Basic classification, general overview of properties and basic technology.
|
Learning activities and teaching methods
|
Lecturing, Projection (static, dynamic), Practice exercises
- Preparation for examination
- 110 hours per semester
- Preparation for course credit
- 10 hours per semester
|
prerequisite |
---|
Knowledge |
---|
Knowledge of physics, chemistry, physical chemistry. |
Knowledge of physics, chemistry, physical chemistry. |
learning outcomes |
---|
characterise the glassy state |
characterise the glassy state |
describe the types of stresses in glass |
describe the types of stresses in glass |
characterise the main types of inorganic glasses |
characterise the main types of inorganic glasses |
characterise the main types of ceramics |
characterise the main types of ceramics |
provide an overview of glass and ceramic technologies |
provide an overview of glass and ceramic technologies |
Skills |
---|
sort inorganic materials |
sort inorganic materials |
propose methods of stress modification in glass |
propose methods of stress modification in glass |
suggest the use of different types of glass |
suggest the use of different types of glass |
suggest the use of different types of ceramics |
suggest the use of different types of ceramics |
choose a suitable technology for preparing glass or ceramics with the desired properties |
choose a suitable technology for preparing glass or ceramics with the desired properties |
teaching methods |
---|
Knowledge |
---|
Lecturing |
Lecturing |
Projection (static, dynamic) |
Projection (static, dynamic) |
Skills |
---|
Practice exercises |
Practice exercises |
Dialogic (Discussion, conversation, brainstorming) |
Dialogic (Discussion, conversation, brainstorming) |
assessment methods |
---|
Knowledge |
---|
Analysis of the student's performance |
Analysis of the student's performance |
Grade (Using a grade system) |
Grade (Using a grade system) |
Oral examination |
Oral examination |
Didactic test |
Didactic test |
Recommended literature
|
-
ALDINGER, F., WEBERRUSS, V.A. Advanced Ceramics and Future Materials: An Introduction to Structures, Properties, Technologies, Methods. Wiley-VCH, 2010. ISBN 9783527321575.
-
CALLISTER, W.D. Materials Science and Engineering: An Introduction. 9th Ed.. Hoboken: Wiley, 2014. ISBN 978-1-118-32457-8.
-
KRAUS, I. Elementární fyzika pevných látek. 3. přeprac. vyd.. Praha: Česká technika ? nakladatelství ČVUT, 2022. ISBN 978-80-01-06953-0.
-
KRAUS, I. Úvod do fyziky pevných látek. 2. přeprac. vyd.. Praha: ČVUT, 2009. ISBN 978-80-01-04257-1.
-
LEITNER, J. Termodynamika materiálů. 2. upr. a rozš. vyd.. Praha: VŠCHT, 2019. ISBN 978-80-7592-045-4.
-
MENČÍK, J. Aplikovaná mechanika materiálů. 1. vyd.. Pardubice: UPCE, 2019. ISBN 9788075602268.
-
MENČÍK, J. Teoretické základy procesů tvarování skla. 1. vyd.. Pardubice: UPCE, 2019. ISBN 9788075602701.
-
MITZI, D.B. Solution Processing of Inorganic Materials. Hoboken: Wiley, 2009. ISBN 978-0-470-40665-6.
-
NĚMEC, D. Základy výrobních technologií. 7. upr. vyd.. Zlín: UTB, 2008. ISBN 978-80-7318-737-8.
-
PALMERO, P., CAMBIER, F., DE BARRA, E. (Ed.). Advances in Ceramic Biomaterials: Materials, Devices and Challenges. Woodhead Publishing Series in Biomaterials.. Duxford: Woodhead Publishing, 2017. ISBN 9780081008812.
-
RICHERSON, D.W. Modern Ceramic Engineering: Properties, Processing, and Use in Design. 3rd Ed.. Boca Raton: CRC Press, 2006. ISBN 978-1-57444-693-7.
-
SCHUBERT, U. Synthesis of Inorganic Materials. 3rd Completely Rev. and Enlarged Ed.. Weinheim: Wiley-VCH, 2012. ISBN 978-3-527-32714-0.
-
VALÁŠKOVÁ, M. Vybrané vrstevnaté silikáty a jejich modifikované nanomateriály. 1. vyd.. Brno: Akademické nakladatelství CERM, 2012. ISBN 978-80-7204-811-3.
-
VOJTĚCH, D. Materiály a jejich mezní stavy. 1. vyd.. Praha: VŠCHT, 2010. ISBN 978-80-7080-741-5.
-
WEST, A.R. Solid State Chemistry and its Applications. 2nd Ed.. Hoboken: Wiley, 2022. ISBN 978-1-118-69557-9.
-
WONG, W.-Y., DONG, O. (Ed.). Functional Nanomaterials: Synthesis, Properties, and Applications. Weinheim: Wiley-VCH, 2022. ISBN 978-3-527-34797-1.
|