Course: Experiment Evaluation I

« Back
Course title Experiment Evaluation I
Course code TUFMI/TK2ZE
Organizational form of instruction Lecture + Lesson + Seminary
Level of course Bachelor
Year of study not specified
Semester Summer
Number of ECTS credits 3
Language of instruction Czech
Status of course Compulsory
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Kutálková Eva, RNDr. Ph.D.
  • Kocourková Karolína, Ing. Ph.D.
  • Harea Evghenii, MSc. Ph.D.
Course content
1. Instrumental errors. 2. Distribution of measured quantity. 3. Estimating parametres of normal distribution. 4. Error estimations for indirect measurements. 5. Correlation and regression. 6. Statistical hypothesis testing. 7. Nonparametric tests.

Learning activities and teaching methods
Lecturing, Activating (Simulation, games, dramatization)
  • Preparation for course credit - 24 hours per semester
  • Home preparation for classes - 54 hours per semester
  • Participation in classes - 12 hours per semester
prerequisite
Knowledge
Basic knowledge of mathematics.
Basic knowledge of mathematics.
learning outcomes
define the errors of measuring instruments
define the errors of measuring instruments
explain the distribution of data with respect to the normal distribution
explain the distribution of data with respect to the normal distribution
explain the calculation of the error of an indirectly measured quantity
explain the calculation of the error of an indirectly measured quantity
explain the principle of hypothesis testing
explain the principle of hypothesis testing
explain the principles of regression and correlation
explain the principles of regression and correlation
Skills
estimate the errors of measuring instruments from the documentation
estimate the errors of measuring instruments from the documentation
calculate the quantiles of the normal distribution
calculate the quantiles of the normal distribution
calculate the error of an indirectly measured quantity
calculate the error of an indirectly measured quantity
test statistical hypothesis
test statistical hypothesis
calculate the parameters of the regression model
calculate the parameters of the regression model
teaching methods
Knowledge
Lecturing
Activating (Simulation, games, dramatization)
Activating (Simulation, games, dramatization)
Lecturing
Skills
Individual work of students
Individual work of students
Practice exercises
Practice exercises
assessment methods
Knowledge
Analysis of works made by the student (Technical products)
Grade (Using a grade system)
Grade (Using a grade system)
Anamnestic method
Anamnestic method
Analysis of works made by the student (Technical products)
Recommended literature
  • ANDĚL, J. Základy matematické statistiky. MatfyzPress, 2011. ISBN 978-80-7378-162-0.
  • BUDÍKOVÁ, M., KRÁLOVÁ, M., MAROŠ, B. Průvodce základními statistickými metodami. Grada, 2010. ISBN 978-80-247-3243-5.
  • FREEDMAN, D., PISANI, R. Statistics, 4th ed.. W.W. Norton & Company, 2007. ISBN 978-0393929720.
  • Jiří Neubauer, Marek Sedlačík, Oldřich Kříž. Základy statisticky. Aplikace v technických a ekonomických oborech. Praha, 2012. ISBN 978-80-247-4273-1.
  • LEPŠ, J, ŠMILAUER, P. Biostatistika. EPISTEME, Praha, 2016. ISBN 978-80-7394-587-9.
  • MELOUN, M., MILITKÝ, J. Kompendium statistického zpracování dat. Praha: Karolinum, 2012. ISBN 80-200-1396-2.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester