Course: Nonmetallic Materials

« Back
Course title Nonmetallic Materials
Course code TUFMI/TE6NA
Organizational form of instruction Lecture
Level of course Bachelor
Year of study not specified
Semester Summer
Number of ECTS credits 4
Language of instruction English
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Course availability The course is available to visiting students
Lecturer(s)
  • Mrázek Jan, Ing. Ph.D.
Course content
- Basic characterization and classification of inorganic materials. Properties of materials depending on the type of binding and structure of the material. - Glass state - signs of glass transformation, glass structure. Polymorphic transformations of SiO2. - Glass crystallization, glass cooling - transient and permanent stress, glass hardening, cooling rate. - Main types of inorganic glasses and their production (sheets, fibers). Properties of glasses at normal temperatures, chemical resistance of glass. - Heat resistant borosilicate glass - Pyrex, Simax - structure and properties. Vycor and microporous glass. - Glass-ceramics - production, types of glass ceramics, characteristic properties, use. - Ceramics - definition of ceramic materials, structure, phase composition and typical properties of ceramic materials. - Main types of ceramics and technology basics. - Glass and ceramic coatings. Technology (anodizing, enameling, sputtering, PLD, sol-gel) and improving properties. - Optical properties of materials, optical waveguides, luminophores (optical glasses, VIS, NIR). - Sol-gel method. Transparent ceramics. Basic principles and possibilities of applications. Comparison of the properties with conventional glass and ceramic processes. - Inorganic non-metallic biomaterials. - Inorganic binders. - Plastic deformation of inorganic non-metallic materials. Origin and propagation of cracks.

Learning activities and teaching methods
Lecturing, Projection (static, dynamic), Practice exercises, Individual work of students
  • Preparation for examination - 120 hours per semester
prerequisite
Knowledge
Knowledge of physics, chemistry, physical chemistry.
Knowledge of physics, chemistry, physical chemistry.
learning outcomes
characterise the glassy state
characterise the glassy state
describe the types of stresses in glass
describe the types of stresses in glass
characterise the main types of inorganic glasses
characterise the main types of inorganic glasses
characterise the main types of ceramics
characterise the main types of ceramics
describe the optical properties of materials
describe the optical properties of materials
Skills
sort inorganic materials
sort inorganic materials
propose methods of stress modification in glass
propose methods of stress modification in glass
suggest the use of different types of glass
suggest the use of different types of glass
suggest the use of different types of ceramics
suggest the use of different types of ceramics
select the appropriate optical material for the application
select the appropriate optical material for the application
teaching methods
Knowledge
Projection (static, dynamic)
Lecturing
Projection (static, dynamic)
Lecturing
Skills
Individual work of students
Individual work of students
Practice exercises
Practice exercises
Dialogic (Discussion, conversation, brainstorming)
Dialogic (Discussion, conversation, brainstorming)
assessment methods
Knowledge
Oral examination
Preparation of a presentation
Preparation of a presentation
Grade (Using a grade system)
Grade (Using a grade system)
Analysis of the student's performance
Oral examination
Analysis of the student's performance
Recommended literature
  • Callister, William D. Materials science and engineering : an introduction. 7th ed. New York : John Wiley & Sons, 2007. ISBN 978-0-471-73696-7.
  • Fanderlík I. Vlastnosti skel. Praha: Informatorium, 1996. ISBN 80-85427-91-5.
  • Furbacher, I., Macek, K. Lexikon technických materiálů. Praha : Verlag Dashofer, 2003.
  • Hanykýř, V., Havrda, J. Speciální technologie keramiky I. Praha : SNTL, 1985.
  • Hanykýř V., Havrda J., Trávníček Z. Speciální technologie keramiky II. Praha : VŠCHT, 1989.
  • Hanykýř V., Kutzendörfer J. Technologie keramiky. Praha: Silikátový svaz, 2008. ISBN 978-80-86821-48-1.
  • Hlaváč J. Základy technologie silikátů. Praha : Alfa, 1988.
  • Kraus I. Struktura a vlastnosti krystalů. Praha: Academia, 1993. ISBN 80-200-0372-x.
  • kraus. struktura a vlastnosti krystalů.
  • Lawrence H.Van Vlack. Elements of Materials Science and Engineering. Rading : Addison-Wesley, 1989. ISBN 0201093146.
  • Matoušek, J. Anorganické nekovové materiály. Praha : VŠCHT, 1992.
  • Ossi, P. Disordered Materials An introduchtion. Berlin : Springer, 2003. ISBN 3-540-41328-6.
  • Ptáček, a kol. Nauka o materiálu II. Brno : CERM, 1999. ISBN 80-7204-130-4.
  • Ptáček, Luděk. Nauka o materiálu I. Brno : CERM, 2001. ISBN 8072041932.
  • Strnad, Z. Skelně krystalické materiály. Praha : SNTL, 1983.
  • Šašek, L. Chemická technologie speciálních silikátových materiálů. Praha : VŠCHT, 1988.
  • Volf, M. B. Technická skla a jejich vlastnosti. Praha : SNTL, 1987.
  • Volf M.B. Chemie skla. Praha - SNTL, 1978.
  • Volf M.B. Technická skla a jejich vlastnosti . Praha - SNTL, 1987.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester