Course: Systems Identification

« Back
Course title Systems Identification
Course code AURP/ADIDS
Organizational form of instruction Seminar
Level of course Doctoral
Year of study not specified
Semester Winter
Number of ECTS credits 10
Language of instruction Czech
Status of course Optional
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Kubalčík Marek, prof. Ing. Ph.D.
Course content
-Classification of dynamic stochastic regression models suitable for design of modern control methods. - Linear dynamic stochastic models (ARX, ARMAX, ARIMAX, OE, BJ, state space). - Least squares method - Extended least squares method - Instrumental variable method - Prediction error method - Recursive identification algorithms. - Nonlinear dynamic stochastic models (NARX, NARMAX, NOE). - Hammerstein and Wiener model structures and their identification. - Utilization of artificial intelligence methods for identification of nonlinear systems - Evaluation of quality identification experiments.

Learning activities and teaching methods
Methods for working with texts (Textbook, book), Exercises on PC
prerequisite
Knowledge
Adaptive and predictive control (Master's course) System Identification (Master's course)
Adaptive and predictive control (Master's course) System Identification (Master's course)
learning outcomes
Classification of dynamic stochastic regression models suitable for design of modern control methods
Classification of dynamic stochastic regression models suitable for design of modern control methods
Linear dynamic stochastic models (ARX, ARMAX, ARIMAX, OE, BJ, state space)
Linear dynamic stochastic models (ARX, ARMAX, ARIMAX, OE, BJ, state space)
Modifications of the recursive least squares method
Modifications of the recursive least squares method
Nonlinear dynamic stochastic models (NARX, NARMAX, NOE)
Nonlinear dynamic stochastic models (NARX, NARMAX, NOE)
Extended least squares method
Extended least squares method
Skills
Utilization of artificial intelligence methods for identification of nonlinear systems
Utilization of artificial intelligence methods for identification of nonlinear systems
Evaluation of quality of identification experiments
Evaluation of quality of identification experiments
Hammerstein and Wiener model identification
Hammerstein and Wiener model identification
Implementation of recursive identification aalgorithms
Implementation of recursive identification aalgorithms
Implementation of prediction error method
Implementation of prediction error method
teaching methods
Knowledge
Exercises on PC
Exercises on PC
Methods for working with texts (Textbook, book)
Methods for working with texts (Textbook, book)
assessment methods
Oral examination
Oral examination
Written examination
Written examination
Recommended literature
  • Digital self-tuning controllers : algorithms, implementation and applications. London : Springer, 2005. ISBN 1-85233-980-2.
  • Bobál, Vladimír. Identifikace systémů. Vyd. 1. Zlín : Univerzita Tomáše Bati ve Zlíně, 2009. ISBN 978-80-7318-888-7.
  • DUNÍK, J. Identifikace systémů a filtrace. ZČU v Plzni, 2018. ISBN 978-80-261-0775-0.
  • Garnier, H., Wang, L. Identification. of Continuos-time Models from Sampled Data. Springer-Verlag, London, 2008. ISBN 978-1-84800-160-2.
  • HOFREITER, M. Identifikace systémů I.. ČVUT v Praze, 2009. ISBN 978-80-01-04228-1.
  • Janczak, A. Identification of Nonlinear SystemsUsing Neural Networks and Polynomial Models. Springer-Verlag Berlin, 2005. ISBN 3-540-23185-4.
  • Keesman, K. J. System Identification. An Introduction.. Springer-Verlag London, 2011. ISBN 978-0-85729-521-7.
  • Ljung, L. System identification: Theory for the user. MIT Press Cambridge, 1987.
  • Mikleš, J., Fikar, M. Process modelling, identification, and control 2. Bratislava : STU, 2004. ISBN 80-227-2132-8.
  • Nelles, Oliver. Nonlinear system identification : from classical approaches to neural networks and fuzzy models. Berlin : Springer, 2001. ISBN 3-540-67369-5.
  • Noskievič, P. Modelování a identifikace systémů. Montanex, Ostrava, 1999. ISBN 80-7225-030-2.
  • Söderström, T., Stoica, P. System Identification. Prentice Hall, University Press, Cambridge, UK, 1989.
  • VROŽINA, M., JANČÍKOVÁ, Z., A DAVID, J. Identifikace systémů. VŠB - TU Ostrava, 2012. ISBN 978-80-248-2594-6.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester
Faculty: Faculty of Applied Informatics Study plan (Version): Engineering Informatics (16) Category: Special and interdisciplinary fields - Recommended year of study:-, Recommended semester: Winter
Faculty: Faculty of Applied Informatics Study plan (Version): Engineering Informatics (16) Category: Special and interdisciplinary fields - Recommended year of study:-, Recommended semester: Winter
Faculty: Faculty of Applied Informatics Study plan (Version): Engineering Informatics (0) Category: Special and interdisciplinary fields - Recommended year of study:-, Recommended semester: Winter
Faculty: Faculty of Applied Informatics Study plan (Version): Automatic Control and Informatics (0) Category: Special and interdisciplinary fields - Recommended year of study:-, Recommended semester: Winter