|
Lecturer(s)
|
-
Polášek Vladimír, Mgr. Ph.D.
|
|
Course content
|
- Introduction to the course - Propositions, operations with propositions, propositional functions, tautology, existential and universal quantifier. - Sets, operations with sets, Cartesian product, mappings. - Real function of one real variable, domain and codomain, properties of the functions, graphs of the functions. - Algebraic and transcendental functions. - Limit of a function, theorems about limits, infinite limit, limits in improper points, asymptote, continuity of a function. - Derivative of a function, enumeration of derivative, differential of a function, derivatives of higher orders, and L'Hospital's rule. - Monotonicity of a function, extrema of a function, convexity, concavity, inflex points. - Applications of the differential calculus in physics and economics. - Integral calculus of the functions of one real variable: Primitive function, indefinite integral, decomposition methods. - Integration by parts, substitution method. - Integration of rational and irrational functions, integration of goniometric functions. - Definite integral: Definition of definite integral, enumeration and properties of definite integral. - Applications of definite integral in geometry, physics, and economy.
|
|
Learning activities and teaching methods
|
Lecturing, Methods for working with texts (Textbook, book), Practice exercises
- Participation in classes
- 20 hours per semester
- Home preparation for classes
- 31 hours per semester
- Preparation for course credit
- 35 hours per semester
- Preparation for examination
- 49 hours per semester
|
| prerequisite |
|---|
| Knowledge |
|---|
| Knowledge of secondary school mathematics |
| Knowledge of secondary school mathematics |
| learning outcomes |
|---|
| Verbally define the term function (a real function of one real variable) and the related terms domain of definition and range of values. |
| Verbally define the term function (a real function of one real variable) and the related terms domain of definition and range of values. |
| Identify the elementary functions from the graphs. |
| Identify the elementary functions from the graphs. |
| Explain the geometric meaning of the derivative of a function at a point. |
| Explain the geometric meaning of the derivative of a function at a point. |
| Explain what a primitive function is to a given function. |
| Explain what a primitive function is to a given function. |
| Formulate the Newton-Leibniz formula. |
| Formulate the Newton-Leibniz formula. |
| Clarify the geometric meaning of a definite integral. |
| Clarify the geometric meaning of a definite integral. |
| Skills |
|---|
| Determine and set the domain of definition of the function. |
| Determine and set the domain of definition of the function. |
| Sketch the graphs of elementary functions and describe their properties. |
| Sketch the graphs of elementary functions and describe their properties. |
| Calculate limits using algebraic adjustments and using L'Hospital's rule. |
| Calculate limits using algebraic adjustments and using L'Hospital's rule. |
| Differentiate elementary, composite, product and quotient functions. |
| Differentiate elementary, composite, product and quotient functions. |
| Calculate the stationary points of the function and decide on the types of possible extremes. |
| Calculate the stationary points of the function and decide on the types of possible extremes. |
| Find the inflection points of a function and the intervals on which the function is convex/concave. |
| Find the inflection points of a function and the intervals on which the function is convex/concave. |
| Find the equation of the tangent to the graph of the function and sketch it. |
| Find the equation of the tangent to the graph of the function and sketch it. |
| Compute simple indefinite integrals. |
| Compute simple indefinite integrals. |
| Using a definite integral, calculate the area content of bounded graphs of elementary functions. |
| Using a definite integral, calculate the area content of bounded graphs of elementary functions. |
| teaching methods |
|---|
| Knowledge |
|---|
| Practice exercises |
| Lecturing |
| Lecturing |
| Practice exercises |
| Methods for working with texts (Textbook, book) |
| Methods for working with texts (Textbook, book) |
| assessment methods |
|---|
| Written examination |
| Grade (Using a grade system) |
| Written examination |
| Grade (Using a grade system) |
|
Recommended literature
|
-
HOŠKOVÁ, Š., KUBEN, J., RAČKOVÁ, P. Integrální počet funkcí jedné proměnné. 2006.
-
Kluvánek, Mišík, Švec. Matematika 1. Bratislava, 1959.
-
KREML, P., VLČEK, J., VOLNÝ, P., KRČEK, J., POLÁČEK, J. Matematika II.
-
Kuben, J., Šarmanová, P. Diferenciální počet funkcí jedné proměnné. VŠB-TU Ostrava, 2006.
-
Matejdes, M. Aplikovaná matematika. Matcentrum-Zvolen, 2005.
-
Ostravský J., Polášek V. Diferenciální a integrální počet funkce jedné proměnné: vybrané statě. Zlín, 2011. ISBN 978-80-7454-124-7.
-
Polák, J. Přehled středoškolské matematiky. Praha : Prometheus, 1995. ISBN 80-85849-78-X.
-
Polák, J. Středoškolská matematika v úlohách II. Praha : Prometheus, 1999. ISBN 80-7196-166-3.
-
Polák, Josef. Středoškolská matematika v úlohách I. 2., upr. vyd. Praha : Prometheus, 2006. ISBN 80-7196-337-2.
-
POLÁŠEK, V., SEDLÁČEK, L. & KOZÁKOVÁ, L. Matematický seminář. Zlín, 2021. ISBN 978-80-7454-987-8.
-
REKTORYS, K. Přehled užité matematiky I. Praha : Prometheus, 1995. ISBN 80-85849-92-5.
|