Course: Mathematics

« Back
Course title Mathematics
Course code AUM/ADMAT
Organizational form of instruction Seminar
Level of course Doctoral
Year of study not specified
Semester Winter and summer
Number of ECTS credits 10
Language of instruction Czech
Status of course Compulsory
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Řezníčková Jana, Mgr. Ph.D.
  • Prokop Roman, prof. Ing. CSc.
  • Fajkus Martin, RNDr. Ph.D.
  • Martinek Pavel, Ing. Ph.D.
Course content
.

Learning activities and teaching methods
Methods for working with texts (Textbook, book), Individual work of students
prerequisite
Knowledge
.
.
learning outcomes
define basic concepts of theory of differential equations: a differential equation, a general solution and a particular solution of the differential equation, an initial value problem
define basic concepts of theory of differential equations: a differential equation, a general solution and a particular solution of the differential equation, an initial value problem
recognize a separable differential equation
recognize a separable differential equation
explain the concept of a linear first order ordinary differential equation
explain the concept of a linear first order ordinary differential equation
define a homogeneous and a nonhomogeneous linear higher order ordinary differential equation
define a homogeneous and a nonhomogeneous linear higher order ordinary differential equation
describe basic methods of solving linear higher order ordinary differential equations with constant coefficients
describe basic methods of solving linear higher order ordinary differential equations with constant coefficients
Skills
apply a method of separating variables in solving separable differential equations
apply a method of separating variables in solving separable differential equations
solve a linear first order ordinary differential equation using the method of variation of a parameter
solve a linear first order ordinary differential equation using the method of variation of a parameter
use a suitable method in solving higher order linear ordinary differential equations with constant coefficients
use a suitable method in solving higher order linear ordinary differential equations with constant coefficients
solve an initial value problem for the given differential equation
solve an initial value problem for the given differential equation
teaching methods
Knowledge
Individual work of students
Individual work of students
Methods for working with texts (Textbook, book)
Methods for working with texts (Textbook, book)
assessment methods
Composite examination (Written part + oral part)
Composite examination (Written part + oral part)
Grade (Using a grade system)
Grade (Using a grade system)
Recommended literature
  • BRONSON R., COSTA B. G. Schaum's outline of differential equations. New York: McGraw-Hill, 2006. ISBN 0-07-145687-2.
  • Budíková M. Popisná statistika. Brno, 2001. ISBN 8021018313.
  • Budíková M. Průvodce základními statistickými metodami. Praha, 2010. ISBN 978-80-247-3243-5.
  • CODDINGTON, E.A., LEVINSON, N. Theory of Ordinary Differential Equations. New York, McGraw-Hill, 1955. ISBN 0070115427.
  • Černý J. Základní grafové algoritmy.
  • Demel J. Grafy a jejich aplikace. Praha, 2002.
  • Diestel J. Graph Theory. 2005.
  • Gruska J. Foundations of computing. International Thompson Computer Press, 1997. ISBN 978-1850322436.
  • Hliněný P. Základy teorie grafů. Brno, 2010.
  • Jaroš F. Pravděpodobnost a statistika. Praha, 2002. ISBN 80-7080-474-2.
  • Jungnickel D. Graphs, networks and algorithms. 2013.
  • Kalas J., Ráb M. Obyčejné diferenciální rovnice. Brno, 2001. ISBN 80-210-2589-1.
  • Kučera L. Kombinatorické algoritmy. Praha, 1989.
  • Matoušek J., Nešetřil J. Kapitoly z diskrétní matematiky. Praha, 2010.
  • Nagy, J. Stabilita řešení obyčejných diferenciálních rovnic. Praha : SNTL, 1980.
  • Řezníčková J. Diferenciální rovnice - učební text. Zlín, 2015.
  • Sipser M. Introduction to the theory of computation. Boston, 1997.
  • Veit J. Integrální transformace. Praha, 1979.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester
Faculty: Faculty of Applied Informatics Study plan (Version): Engineering Informatics (16) Category: Special and interdisciplinary fields - Recommended year of study:-, Recommended semester: Winter
Faculty: Faculty of Applied Informatics Study plan (Version): Engineering Informatics (16) Category: Special and interdisciplinary fields - Recommended year of study:-, Recommended semester: Winter
Faculty: Faculty of Applied Informatics Study plan (Version): Engineering Informatics (0) Category: Special and interdisciplinary fields - Recommended year of study:-, Recommended semester: Winter
Faculty: Faculty of Applied Informatics Study plan (Version): Automatic Control and Informatics (0) Category: Special and interdisciplinary fields - Recommended year of study:-, Recommended semester: Winter