Lecturer(s)
|
-
Řezníčková Jana, Mgr. Ph.D.
-
Prokop Roman, prof. Ing. CSc.
-
Fajkus Martin, RNDr. Ph.D.
-
Martinek Pavel, Ing. Ph.D.
|
Course content
|
.
|
Learning activities and teaching methods
|
Methods for working with texts (Textbook, book), Individual work of students
|
prerequisite |
---|
Knowledge |
---|
. |
. |
learning outcomes |
---|
define basic concepts of theory of differential equations: a differential equation, a general solution and a particular solution of the differential equation, an initial value problem |
define basic concepts of theory of differential equations: a differential equation, a general solution and a particular solution of the differential equation, an initial value problem |
recognize a separable differential equation |
recognize a separable differential equation |
explain the concept of a linear first order ordinary differential equation |
explain the concept of a linear first order ordinary differential equation |
define a homogeneous and a nonhomogeneous linear higher order ordinary differential equation |
define a homogeneous and a nonhomogeneous linear higher order ordinary differential equation |
describe basic methods of solving linear higher order ordinary differential equations with constant coefficients |
describe basic methods of solving linear higher order ordinary differential equations with constant coefficients |
Skills |
---|
apply a method of separating variables in solving separable differential equations |
apply a method of separating variables in solving separable differential equations |
solve a linear first order ordinary differential equation using the method of variation of a parameter |
solve a linear first order ordinary differential equation using the method of variation of a parameter |
use a suitable method in solving higher order linear ordinary differential equations with constant coefficients |
use a suitable method in solving higher order linear ordinary differential equations with constant coefficients |
solve an initial value problem for the given differential equation |
solve an initial value problem for the given differential equation |
teaching methods |
---|
Knowledge |
---|
Individual work of students |
Individual work of students |
Methods for working with texts (Textbook, book) |
Methods for working with texts (Textbook, book) |
assessment methods |
---|
Composite examination (Written part + oral part) |
Composite examination (Written part + oral part) |
Grade (Using a grade system) |
Grade (Using a grade system) |
Recommended literature
|
-
BRONSON R., COSTA B. G. Schaum's outline of differential equations. New York: McGraw-Hill, 2006. ISBN 0-07-145687-2.
-
Budíková M. Popisná statistika. Brno, 2001. ISBN 8021018313.
-
Budíková M. Průvodce základními statistickými metodami. Praha, 2010. ISBN 978-80-247-3243-5.
-
CODDINGTON, E.A., LEVINSON, N. Theory of Ordinary Differential Equations. New York, McGraw-Hill, 1955. ISBN 0070115427.
-
Černý J. Základní grafové algoritmy.
-
Demel J. Grafy a jejich aplikace. Praha, 2002.
-
Diestel J. Graph Theory. 2005.
-
Gruska J. Foundations of computing. International Thompson Computer Press, 1997. ISBN 978-1850322436.
-
Hliněný P. Základy teorie grafů. Brno, 2010.
-
Jaroš F. Pravděpodobnost a statistika. Praha, 2002. ISBN 80-7080-474-2.
-
Jungnickel D. Graphs, networks and algorithms. 2013.
-
Kalas J., Ráb M. Obyčejné diferenciální rovnice. Brno, 2001. ISBN 80-210-2589-1.
-
Kučera L. Kombinatorické algoritmy. Praha, 1989.
-
Matoušek J., Nešetřil J. Kapitoly z diskrétní matematiky. Praha, 2010.
-
Nagy, J. Stabilita řešení obyčejných diferenciálních rovnic. Praha : SNTL, 1980.
-
Řezníčková J. Diferenciální rovnice - učební text. Zlín, 2015.
-
Sipser M. Introduction to the theory of computation. Boston, 1997.
-
Veit J. Integrální transformace. Praha, 1979.
|