|
Lecturer(s)
|
-
Mizera Aleš, doc. Ing. Ph.D.
-
Drábek Pavel, Ing. Ph.D.
-
Sehnálek Stanislav, Ing. Ph.D.
-
Skovajsa Jan, Ing. Ph.D.
|
|
Course content
|
1. Introduction - history, basic concepts, and definitions. Use of CAD/CAM/CAE in virtual prototyping 2. Principles of virtual prototyping from the perspective of sustainable design and the environment (The role of simulation in the product development cycle) 3. The role of simulation in the product development cycle 4. Numerical simulation workflow 5. Preparation of CAD geometry for creating a numerical model (direct approach, reverse engineering) 6. Principles and options for creating computational meshes (FEA, CFD) 7. Specifying boundary conditions, materials, and solver settings 8. Calculation, convergence, and parameter monitoring during calculation 9. Evaluation of results and advanced post-processing 10. Methods and possibilities for product optimization (geometric and gradient methods, materials, and evaluation). 11. Practical demonstrations using Ansys software tools 12. Application of numerical simulations in the field of structural mechanics 13. Application of numerical simulations in the field of fluid flow and heat transfer 14. Trends and innovations in the field of simulations
|
|
Learning activities and teaching methods
|
- Participation in classes
- 56 hours per semester
- Home preparation for classes
- 50 hours per semester
- Preparation for course credit
- 24 hours per semester
|
| prerequisite |
|---|
| Knowledge |
|---|
| Očekává se znalost vektorového počtu v 2D a 3D, práce s PC - vektorová grafika, základní vědomosti o konstrukčních materiálech a jejich vlastnostech. Dále by studenti měli ovládat základní činnosti v softwarovém prostředí s vektorovou grafikou pro 3D modelování a konstrukci z oblasti mechanické struktury strojů a souvislostí mechanických uspořádání a řízení pohybu. |
| Očekává se znalost vektorového počtu v 2D a 3D, práce s PC - vektorová grafika, základní vědomosti o konstrukčních materiálech a jejich vlastnostech. Dále by studenti měli ovládat základní činnosti v softwarovém prostředí s vektorovou grafikou pro 3D modelování a konstrukci z oblasti mechanické struktury strojů a souvislostí mechanických uspořádání a řízení pohybu. |
| Knowledge of vector computing in 2D and 3D, working with PCsvector graphics, basic knowledge of construction materials and their propertiesis expected. Furthermore, students should be proficient in basic activities in a software environment with vector graphics for 3D modeling and construction in the field of mechanical structure of machines and the context of mechanical arrangements and motion control. |
| Knowledge of vector computing in 2D and 3D, working with PCsvector graphics, basic knowledge of construction materials and their propertiesis expected. Furthermore, students should be proficient in basic activities in a software environment with vector graphics for 3D modeling and construction in the field of mechanical structure of machines and the context of mechanical arrangements and motion control. |
| Skills |
|---|
| Understand technical drawings and model components in CAD software. |
| Understand technical drawings and model components in CAD software. |
| learning outcomes |
|---|
| Knowledge |
|---|
| Understanding the principles of virtual prototyping and its importance for sustainable design. Identifying areas for improvement through simulations. |
| Understanding the principles of virtual prototyping and its importance for sustainable design. Identifying areas for improvement through simulations. |
| Skills |
|---|
| Application of numerical simulations in structural mechanics, fluid dynamics, and other disciplines. Creation of virtual prototypes with an emphasis on sustainability. Independent performance of virtual simulations and interpretation of results. Creation of sustainable designs with minimal environmental impact. |
| Application of numerical simulations in structural mechanics, fluid dynamics, and other disciplines. Creation of virtual prototypes with an emphasis on sustainability. Independent performance of virtual simulations and interpretation of results. Creation of sustainable designs with minimal environmental impact. |
| teaching methods |
|---|
| Knowledge |
|---|
| Exercises on PC |
| Exercises on PC |
| Individual work of students |
| Individual work of students |
| Skills |
|---|
| Exercises on PC |
| Exercises on PC |
| Individual work of students |
| Individual work of students |
| assessment methods |
|---|
| Knowledge |
|---|
| Composite examination (Written part + oral part) |
| Composite examination (Written part + oral part) |
| Preparation of a presentation, giving a presentation |
| Preparation of a presentation, giving a presentation |
|
Recommended literature
|
-
BITTNAR, Zdenek a ŠEJNOHA, Jiří. Numerické metody mechaniky. ČVUT Praha. 1992.
-
J. Fürst, K. Kozel. Numerická řešení problémů proudění I, II, III. ČVUT, Praha. 2001.
-
Kozubková, M., Drábková, S., Šťáva, P. Matematické modely stlačitelného a nestlačitelného proudění ? Metoda konečných objemů. VŠB-TU Ostrava. 1999.
-
OKROUHLÍK, Miloslav a PTÁK, Svatopluk. Počítačová mechanika I: základy nelineární mechaniky kontinua. Česká technika - nakladatelství ČVUT Praha. 2006.
|