|
Lecturer(s)
|
-
Ponížil Petr, prof. RNDr. Ph.D.
|
|
Course content
|
- Numerical solution of nonlinear equations. - Numerical solution of systems of linear and nonlinear equations. - Numerical differentiation and integration. - Numerical solution of differential equations.
|
|
Learning activities and teaching methods
|
Methods for working with texts (Textbook, book), Individual work of students
- Preparation for examination
- 50 hours per semester
|
| prerequisite |
|---|
| Knowledge |
|---|
| Knowledge of mathematics and physics. |
| Knowledge of mathematics and physics. |
| learning outcomes |
|---|
| explain the principle of numerical integration |
| explain the principle of numerical integration |
| explain the principle of numerical derivation |
| explain the principle of numerical derivation |
| describe the principles of numerical solution of differential equations |
| describe the principles of numerical solution of differential equations |
| describe the procedure for creating a numerical simulation |
| describe the procedure for creating a numerical simulation |
| explain basic matrix operations |
| explain basic matrix operations |
| Skills |
|---|
| integrate a function given by a set of points |
| integrate a function given by a set of points |
| derive a function given by a set of points |
| derive a function given by a set of points |
| solve numerically the differential equation |
| solve numerically the differential equation |
| create a simple numerical simulation |
| create a simple numerical simulation |
| perform basic operations with matrices |
| perform basic operations with matrices |
| teaching methods |
|---|
| Knowledge |
|---|
| Individual work of students |
| Individual work of students |
| Methods for working with texts (Textbook, book) |
| Methods for working with texts (Textbook, book) |
| Skills |
|---|
| Individual work of students |
| Individual work of students |
| Practice exercises |
| Practice exercises |
| assessment methods |
|---|
| Knowledge |
|---|
| Oral examination |
| Oral examination |
|
Recommended literature
|
-
Bernard V. Liengme. A Guide to Microsoft Excel for Scientists and Engineers.
-
Boháč, Z., Častová, N. Základní numerické metody. Ostrava, VŠB, 1985.
-
DUBIN, D.H.E. Numerical and Analytical Methods for Scientists and Engineers using Mathematica. Hoboken, N.J.: John Wiley, xvi, 636s., 2003. ISBN 978-0-471-72365-.
-
FAUSETT, L.V. Numerical Methods: Algorithms and Applications. Upper Saddle River, N.J.: Prentice Hall, xxii, 2003. ISBN 0130314005.
-
HAMMING, R.W. Numerical Methods for Scientists and Engineers. 2nd Ed. New York: Dover, 1973. ISBN 9780486134826.
-
CHAPRA, S.C., CANALE, P.R. Numerical Methods for Engineers. 6th Ed. Boston: McGraw-Hill Higher Education, 2010. ISBN 978-0-07-340106-5.
-
KUBÍČEK, M., DUBCOVÁ, M., JANOVSKÁ, D. Numerické metody a algoritmy. 2. opr. vyd. Praha: VŠCHT, 2005. ISBN 80-7080-558-7.
-
LAW, V.J. Numerical Methods for Chemical Engineers: Using Excel, VBA, and MATLAB. Boca Raton: CRC Press, 2013. ISBN 978-1-4665-7534-9.
-
LIENGME, B.V. A Guide to Microsoft Excel for Scientists and Engineers. Amsterdam, Boston: Academic Press/Elsevier, 2009.
-
Míka, S., Brandner, M. Numerické metody I. Plzeň, 2000.
-
Orvis, William J. Microsoft Excel pro vidce a inženýry. Brno : Computer Press, 1996. ISBN 8085896494.
-
RAO, S. Numerical Methods for Scientists and Engineers. PHI Learnin, 2018. ISBN 978-8193593882.
-
Rektorys, K. Přehled užité matematiky. Praha : Prometheus, 1995.
|