|
Lecturer(s)
|
-
Kutálková Eva, RNDr. Ph.D.
-
Kocourková Karolína, Ing. Ph.D.
-
Harea Evghenii, MSc. Ph.D.
|
|
Course content
|
1. Instrumental errors. 2. Distribution of measured quantity. 3. Estimating parametres of normal distribution. 4. Error estimations for indirect measurements. 5. Correlation and regression. 6. Statistical hypothesis testing. 7. Nonparametric tests.
|
|
Learning activities and teaching methods
|
Lecturing, Activating (Simulation, games, dramatization)
- Preparation for course credit
- 24 hours per semester
- Home preparation for classes
- 54 hours per semester
- Participation in classes
- 12 hours per semester
|
| prerequisite |
|---|
| Knowledge |
|---|
| Basic knowledge of mathematics. |
| Basic knowledge of mathematics. |
| learning outcomes |
|---|
| define the errors of measuring instruments |
| define the errors of measuring instruments |
| explain the distribution of data with respect to the normal distribution |
| explain the distribution of data with respect to the normal distribution |
| explain the calculation of the error of an indirectly measured quantity |
| explain the calculation of the error of an indirectly measured quantity |
| explain the principle of hypothesis testing |
| explain the principle of hypothesis testing |
| explain the principles of regression and correlation |
| explain the principles of regression and correlation |
| Skills |
|---|
| estimate the errors of measuring instruments from the documentation |
| estimate the errors of measuring instruments from the documentation |
| calculate the quantiles of the normal distribution |
| calculate the quantiles of the normal distribution |
| calculate the error of an indirectly measured quantity |
| calculate the error of an indirectly measured quantity |
| test statistical hypothesis |
| test statistical hypothesis |
| calculate the parameters of the regression model |
| calculate the parameters of the regression model |
| teaching methods |
|---|
| Knowledge |
|---|
| Activating (Simulation, games, dramatization) |
| Lecturing |
| Lecturing |
| Educational trip |
| Activating (Simulation, games, dramatization) |
| Educational trip |
| Skills |
|---|
| Individual work of students |
| Individual work of students |
| Educational trip |
| Educational trip |
| Practice exercises |
| Practice exercises |
| assessment methods |
|---|
| Knowledge |
|---|
| Anamnestic method |
| Anamnestic method |
| Analysis of works made by the student (Technical products) |
| Analysis of works made by the student (Technical products) |
| Grade (Using a grade system) |
| Grade (Using a grade system) |
|
Recommended literature
|
-
ANDĚL, J. Základy matematické statistiky. MatfyzPress, 2011. ISBN 978-80-7378-162-0.
-
BUDÍKOVÁ, M., KRÁLOVÁ, M., MAROŠ, B. Průvodce základními statistickými metodami. Grada, 2010. ISBN 978-80-247-3243-5.
-
FREEDMAN, D., PISANI, R. Statistics, 4th ed.. W.W. Norton & Company, 2007. ISBN 978-0393929720.
-
Jiří Neubauer, Marek Sedlačík, Oldřich Kříž. Základy statisticky. Aplikace v technických a ekonomických oborech. Praha, 2012. ISBN 978-80-247-4273-1.
-
LEPŠ, J, ŠMILAUER, P. Biostatistika. EPISTEME, Praha, 2016. ISBN 978-80-7394-587-9.
-
MELOUN, M., MILITKÝ, J. Kompendium statistického zpracování dat. Praha: Karolinum, 2012. ISBN 80-200-1396-2.
|