|
Lecturer(s)
|
-
Polášek Vladimír, Mgr. Ph.D.
|
|
Course content
|
- Complex numbers - Coordinate systems - Analytic geometry in the space - Conic sections - Quadrics - Plane and spatial curves - Field theory - Function approximation - Applications of the definite integral - Numerical derivative and integration - Applications of double integral - Triple integrals
|
|
Learning activities and teaching methods
|
Lecturing, Practice exercises
- Participation in classes
- 20 hours per semester
- Home preparation for classes
- 22 hours per semester
- Preparation for course credit
- 25 hours per semester
- Preparation for examination
- 41 hours per semester
|
| prerequisite |
|---|
| Knowledge |
|---|
| Standard knowledge and computational skills of Mathematics I in a level which allow direct consecution to linear algebra, analytic geometry and integral calculus. |
| Standard knowledge and computational skills of Mathematics I in a level which allow direct consecution to linear algebra, analytic geometry and integral calculus. |
| learning outcomes |
|---|
| Define a complex number, its trigonometric and exponential form. |
| Define a complex number, its trigonometric and exponential form. |
| Name the relative positions of geometric figures such as points, vectors, linear and quadratic figures. |
| Name the relative positions of geometric figures such as points, vectors, linear and quadratic figures. |
| Define metric concepts such as a deviation, a distance of geometric shapes, an area content. |
| Define metric concepts such as a deviation, a distance of geometric shapes, an area content. |
| Identify a conic section based on the equation and using sections of quadratic surfaces. |
| Identify a conic section based on the equation and using sections of quadratic surfaces. |
| Define the concepts: a curve in a plane and a curve in a space. |
| Define the concepts: a curve in a plane and a curve in a space. |
| Skills |
|---|
| Convert complex numbers from algebraic to trigonometric form. |
| Convert complex numbers from algebraic to trigonometric form. |
| Calculate powers and square roots of a complex number in trigonometric form. |
| Calculate powers and square roots of a complex number in trigonometric form. |
| Convert Cartesian coordinates of the points in the plane to polar coordinates. |
| Convert Cartesian coordinates of the points in the plane to polar coordinates. |
| Convert the coordinates of the points in the space between Cartesian, cylindrical and spherical coordinate systems. |
| Convert the coordinates of the points in the space between Cartesian, cylindrical and spherical coordinate systems. |
| Transform the equations of conics and curves into polar coordinates. |
| Transform the equations of conics and curves into polar coordinates. |
| Adjust the equation of the conic section to axial form. |
| Adjust the equation of the conic section to axial form. |
| Determine the parameters of the given conic section, such as the coordinates of the center, the vertices of the focus, or the equation of the directrix or the asymptote. |
| Determine the parameters of the given conic section, such as the coordinates of the center, the vertices of the focus, or the equation of the directrix or the asymptote. |
| Eliminate a parameter from parametric equations of curves in a plane. |
| Eliminate a parameter from parametric equations of curves in a plane. |
| Find the equation of the tangent to the curve given in the parametric equations. |
| Find the equation of the tangent to the curve given in the parametric equations. |
| Compute geometric applications of a definite integral for functions specified parametrically or in polar coordinates. |
| Compute geometric applications of a definite integral for functions specified parametrically or in polar coordinates. |
| teaching methods |
|---|
| Knowledge |
|---|
| Practice exercises |
| Practice exercises |
| Lecturing |
| Lecturing |
| assessment methods |
|---|
| Grade (Using a grade system) |
| Grade (Using a grade system) |
| Written examination |
| Written examination |
|
Recommended literature
|
-
Matejdes, M. Aplikovaná matematika. Matcentrum-Zvolen, 2005.
-
Olšák P. Úvod do algebry, zejména lineární. FEL ČVUT Praha, 2007.
-
Ostravský J., Polášek V. Diferenciální a integrální počet funkce jedné proměnné: vybrané statě. Zlín, 2011. ISBN 978-80-7454-124-7.
-
Ostravský, Jan. Přijímací zkoušky z matematiky na FaME a FT ve Zlíně : jediné úplné vydání všech variant v přijímacím řízení v letech 1999-2003. Vyd. 5. Zlín : Univerzita Tomáše Bati, Fakulta technologická, 2003. ISBN 8073181533.
-
Sklenaříková J., Volfová L. Cvičení z matematiky pro bakaláře. OATB A VOŠE, Zlín, 2004.
-
TOMICA, R. Cvičení z matematiky II. Brno : VUT, 1974.
-
Zedník J. Lineární algebra zaměřená na geometrii a ekonomii. UTB FaME, Zlín, 2008.
|